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Abstract— Planar circuit elements in millimeter-wave inte-
grated circuits (MMIC’S) typically consist of one or more dis-
continuities (e.g., stubs) connected to a number of transmission
lines. In the computer-aided design (CAD) and optimization
of such passive elements using the method of moments, it is
necessary to iteratively simulate many subproblems involving
dimensional changes to various parts of the circuit. On examining
the simulation problem closely, it can be seen that there is a
considerable overlap of data in various subproblems. In practice,
each subproblem is solved independent of others, without takkg
into account the duplication of data. This leads to an inefficient
design technique. In this paper, we present a design technique
that effectively exploits the duplication of data by employing a
recursive variant of Gaussian elimination, called order-recursive
Gaussian elimination (ORGE). The potential utility of ORGE
in microwave circuit simulation and CAD is demonstrated by
applying it to the design of a microstrip filter.

I. INTRODUCTION

THE METHOD of moments (MoM) is widely used in
the simulation and computer-aided design (CAD) of

microwave and millimeter-wave integrated circuits (MMIC’s)
[1]–[12]. In the MoM, the boundary value problem for the
unknown current distribution over the surface of the con-
ductors is formulated as an electrical field integral equation
(EFIE). The EFIE is then converted into a system of linear
algebraic equations (for the current) by the application of
suitable basis and testing functions. The circuit characteristics,

such as S-parameters, radiation, and metallization losses, etc.,
can be derived from the computed current distribution. The
current distribution can be solved by implementing the MoM
algorithm either in the space domain [1] or in the spectral
domain [4].

The system (or moment) matrix that represents the electro-
magnetic (EM) interactions between basis and test elements
used to solve for the current distribution is typically dense.
For moderately high-order models (0( 100 – 500)), the cur-
rent distribution may be obtained by resolving the system
of linear algebraic equations using LU decomposition and
subsequent solution of two triangular systems of equations.
The computational complexity of the solution of system of
equations of order N is N3. For several applications in MMIC
simulation where IV is fixed and moderately small, use of
conventional method (via LU decomposition) of solution of
system of moment equations is adequate.
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In certain situations, however, the order of systems of
equations to be solved may change from lV to lV + M, where
the original (IV x IV) moment matrix becomes a submatrix of
the higher-order (IV + M) x (N + M) matrix as a result of aug-
menting the model. The order iM of augmentation is usually
not known a priori in iterative design tasks. This is frequently

encountered in characterization of MMIC elements where

the moment matrix is recursively augmented with new row

and column vectors that correspond, for example, to circuit

extensions, stubs, etc., required to tune a filter or to impedance-
match an amplifier. At present, each augmented matrix is

treated as a new data matrix and the solution of the augmented
system of equations is recomputed from scratch. The resulting
solution procedure becomes computationally inefficient, and,
as shown later, in the worst case, the computational complexity

can become 0( (fV + Lf)4). The primary objective of this
paper is to apply a variant of Gaussian elimination, called

order-recursive Gaussian elimination (ORGE) [13], to develop

a solution procedure of computational complexity 0( (IV +

kf)3). This order of magnitude reduction in computations is

clearly very attractive for the CAD of MMIC’s.
There are also situations encountered in MMIC design

where one iteratively decreases the size or spacing of cer-
tain elements in a circuit to meet the design specifications.
Consider, for example, the reduction in stub length or stub

spacing in the optimization of a low-pass filter, or the reduction

in width of a section of microstrip quarter-wave transformer

to compensate for dispersion. In these situations, the moment
matrix is affected by removal of (or, is decremented by) certain
row or column vectors associated with the changes in the

circuit. As in augmented systems, the order of decrementation
is not known a priori. At present, the solution of each decre-
mented system of equations is recomputed from scratch. We
introduce an order-recursive Gaussian elimination procedure
to solve decremented systems as well, wherein the solution

(specifically, the Gaussian elimination) from the prior iteration
is used to efficiently solve the reduced system of equations at

the present iteration.
In the next section, we present two examples pertaining

to MMIC simulation, namely, discontinuity characterization,
and interactive filter design and demonstrate how augmented
matrices can be constructed in typical problems so as to exploit
the computational advantages of ORGE. The same consider-
ations of augmented matrices apply to decremented matrices
as well; hence, the construction of decremented systems in

the context of MMIC simulation is not discussed. In Section
III, the ORGE algorithms for the solution of augmented
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and decremented systems are introduced and validated by

application to the MoM solution of the current distribution
over a rectangular strip in free space. The intent in solving

such a simple example is to show how a typical planar

problem involving orthogonal currents may be cast in the
ORGE framework and to demonstrate the accuracy of the
ORGE-computed currents in comparison with a reference
solution [14]. The computational complexity of the ORGE
algorithm is also discussed in Section III. In Section IV, we
apply the augmented ORGE algorithm to the interactive design
of a microstrip band-stop (or notch) filter [12] and establish
corroboration with measured data. The filter is realized by

connecting two stubs on either side of a transmission line.
Either the spacing between the stubs or their length is succes-
sively increased at each iteration. This simulation exemplifies
the enhancement in computational efficiency permitted by the
ORGE algorithm for augmented systems. It is straightforward
to apply the decremented ORGE in situations where the
stub length or spacing has to be decreased during a design
iteration. Both augmented and decremented order-recursive
techniques have been applied to resolve large moment systems
in iterative design problems using LU decomposition [15].

These two contributions, namely ORGE and ORLUD, have

been combined into a general framework of MoM implemen-

tation, called order-recursive method of moments (ORMoM),
which facilitates EM simulation-based microwave CAD and
optimization with significant computational advantage over
existing linear system solvers [16]. The concluding remarks
are summarized in Section V.

II. AUGMENTEDMATRIX MODEL OF MMIC

A. Discontinuity Analysis

As an example of MMIC analysis where augmented matri-

ces discussed earlier occur, consider the two-port microstrip
discontinuity shown in Fig. l(a). The input and output ports
are connected by transmission lines at reference planes 1 and
2 to shunt terminations (at 1’ and 2’). Application of MoM
to this circuit yields total currents on the whole structure,
including the connection lines. It is necessary to calculate
complex amplitudes of the incident and reflected currents at
planes 1 and 2 by discarding the influence of port connection
lines and the excitation—a process known as de-embedding.

Note that the discontinuity in Fig. 1(a) is excited by a shunt
current source impressed at the input port by a coaxial cable.
De-embedding requires the solution of additional subproblems
such as the cascade of the input and output lines [Fig. l(b)] and
a line terminated in a short circuit [Fig. 1(c)] to transform the
open-circuit impedance (or Z-parameter) matrix from planes
(l’, 2’) to (1, 2) [17]. Alternatively, one could determine the
complex amplitude of the incident wave at port 1 from the
transmission line model in Fig. 1(b), assuming that the line
is long enough to neglect the reflection from the open end at
the output port, and embed it in the solution of Fig. 1(a) to
compute the S-parameters [18]. The latter approach is used
in this paper to arrive at the augmented matrix model of the
circuit.

a 4s3
(b) (c)

Fig. 1. (a) A two-porl microstrip discontinuity. (b) De-embedding line
cascaded to its mirror image. (c) De-embedding line terminated in a short
circuit.

Some authors have employed spectral estimation techniques
such as generalized pencil of functions [2], [19] and Pron~y’s
method [20] to directly decompose the total port currents
into incident and reflected components. In the absence of
computational “noise” of any significance, however, it appears
that the computational advantage of these methods, namdy,

lack of the need to solve auxiliary problems for deembedding
the circuit parameters, is offset by the added complexity of

the estimation algorithms.
Assume that the input and output lines (of length L) support

Ni and NO basis elements, and the discontinuity (between
planes 1 and 2) supports ~d basis elements. Then, the matrix
equations resulting from application of MoM to the circuit
elements in Fig. 1(a) and 1(b), respectively, can be written as

Knowing the port currents from the solution of (1) and (2),
the two independent S-parameters for a symmetrical two-port
may be computed as

(3)

It is evident from (1) and (2) that the system matrix in (2) is a

submatrix of the matrix in (1). Therefore, if (2) is solved first,
it should be possible to embed its solution in (1) to make the
solution of(1) more efficient. Note that the block sub-matrices
of the system matrix in (1) may be rearranged to obtain

F=--l+wl=l%l‘4)
Clearly, the system (4) is a bordered matrix, obtained by
augmenting the system matrix of (2) with the interactions
pertinent to the discontinuity, and is referred to as augmented

matrix model of the discontinuity. In the sequel, it willl be
discussed how the augmented matrix equation can be solved
efficiently.
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Fig.2. Microstrip double-stub filter.

B. Interactive Filter Design

The use of ORGE will provide further efficiency in MMIC
design applications. Consider the microstrip double-stub filter
shown in Fig. 2. The input and output lines indicated by ports

1 and 2 are oriented longitudinally. It is desired to design two

stubs (each of length Ys ) such that the filter has a pre-specified

cut-off frequency and pass-band roll-off. Once the optimal stub
length is determined, the spacing between the stubs, d., needs
to be tuned to optimize the filter performance. Although the
desired filter can be realized using circuit simulation [21], we
have considered this example to illustrate the computational
advantages of ORGE in microwave CAD.

Assume that the input and output transmission lines (com-

prised by the z-oriented line excluding the section All) are

gridded such that they support lli and lVO basis elements,

respectively. On applying the MoM, the cascade of these two

lines generates a moment matrix, which we will refer to as

line matrix. The line matrix and the corresponding system of

equations for computing line currents are identical to (2). The
section A13 supports lVdO basis functions, thus generating a
self-matrix Z~O’0 of order ~&. The currents along the Z-
directed line would then contribute the upper left system of
sub-matrices shown in (5) at the bottom of the page. Next,

suppose that we add two stubs symmetrically on either side
of the line (see Fig. 2) and iteratively increase their length

(keeping d. fixed) until the filter response or insertion loss

displays the specified cut-off frequency and the pass-band roll-
off. During each iteration, an increasingly large-order linear

system of equations needs to be solved to verify whether or
not the desired response has been achieved. Assume that the
stub length is increased successively in &f steps, where each
iteration contributes additional ~d rows and columns to the

system matrix. Then, at the r-th iteration, the system matrix
will be of (~i + NO + ~~0 + ~~d)-th order, r = 1, . . . . ~.

When the interaction of stubs with the line is accounted for,
the resulting system matrix at the Lfth iteration will have the
structure shown in (5), with appropriate voltage vector and
the unknown current distribution vector. Therefore, at each
iteration, the upper-left system in (5) is augmented by the
reaction terms associated with the two stubs. If the stub length
is fixed and the stub separation is varied instead, then, the

entries corresponding to the stubs may be interchanged with

those of the section Al? to construct the augmented matrix
model of the filter.

III. ORDER-RECURSIVE GAUSSIAN ELIMINATION

In this section, an order-recursive variant of conventional
Gaussian elimination method for computation of Z. in

is presented. The proposed algorithm is developed for the case

when all the leading principal sub-matrices of the matrix A
(whose size is not known a priori) are nonsingular. Therefore,
the solution (albeit suboptimal) can always be computed
without the need of pivoting.

A. The ORGE Algorithm for Augmented Systems

Assume that the Gaussian elimination on (Ar, b,) has been
computed and that for (Ar+l, br+l ) is desired. On augmenting

A. by an additional row and column and b. by an additional

row, we have the equation shown at the bottom of the

next page, where qi,~ represent the elementary transformation
required to eliminate the corresponding element of the original
system matrix, ax,r+l denotes the (r+ 1)th column vector, and
ar+l,x denotes the (r + l)th row vector.

The operations of order-recursive Gaussian elimination can
be divided into two major categories.

1)

2)

Note

The first category consists of updating the new column
of the augmented matrix Ar+ 1 such that the effect of
row operations performed on the matrix A. is reflected
in the (r + l)th column of Ar+l.

The second category consists of the elimination of the
elements of (r + l)th row to transform the augmented
pair [Ar+l, br+l] to an upper trapezoidal form.

that due to the assumption of nonsin~ularitv of the
leading principal sub-matrices-, the above operations- are well
defined. A detailed explanation of performing the various steps
may be found in [22]. For sake of conciseness, we outline

Zii Zio Zid.

Zoi zoo Zodo
Zdoi ~doo Zd. do

Zidl . . . Zid, . . . zidM

Zod, . . . Zod. ., , zodM

Zd,d, ., . Zdod. . . . zdodM

Zd,dl . . . Zd,d, ,.. zdldM

(5)



MISRA AND NAISHADHAM: ORDER-RECURSIVE GAUSSIAN ELIMINATION AND EFFICD3NTCAD OF MICROWAVE CIRCUITS ;!169

the following algorithm to implement the operations discussed
above.

Algorithm A-ORGE: : Augmented Order
Recursive Gaussian Elimination

form =l. -.. .n–l
‘ A,

A~+l= [(2.+1,. (Z*,, +I
%-+1,1-+11 n;br+l = ~b;l7’. .

commen~: update

for2=2,..., r

[’1[”
%,7-+1~a, ?.+1

.—..—,

~r, r+l ~,,r+l [“
V,>*–1—at–l,r+l :

7?,, –1

end

comment: triangularize Ar+l and update br+l
forj=l,. ... r

%+l,j = aT+l,j/aj,j

br+l := br+l – q,+l,jbj
fork =j+l,..., r

%-+1, k := aT+l, k — %+l,ja~>k

end

ar+l,j:= T7r+I,j
end
r:=r+l

B. The ORGE Algorithm for Decremented Systems

In the previous section, it was shown that knowing the

solution of a lower-order system of linear algebraic equations,
it is possible to efficiently compute the solution of higher-order

systems (obtained by augmentation). Next, the converse prob-

lem is addressed: knowing the Gaussian elimination solution of
a higher-order system, an efficient procedure for determination
of solution for a lower-order system of equations (obtained by
deleting some rows and columns of the higher-order system)
is developed. Formally, assume that in Arzr = b., the upper
triangular elements of A after Gaussian elimination (without
pivoting) as well as the pivot entries rli,j are known [see (6)

at the bottom of the next page].
Then, we wish to compute the solution of AGU1= bl, where

l<r.
As in the case of A-ORGE, the operations for the solution

of decremented systems of linear algebraic equations may be
subdivided into two categories.

1) Updating the rows and columns affected by deletion of
lth row/column of the system matrix. This causes the
numerical values of elements with both row and column
indexes greater than / to change, thereby, forcing the

submatrix in rows and columns (1+1) through n than ge.
Then, the following two situations may arise:

a) / = r – 1: This corresponds to the decremented

system where the last row and column of Ar iand
last row of br are deleted. The resulting decremented
system consists of the first (r —1) rows and columns
of of AT and first (r – 1) rows of b, (along with
the pivot information contained in q,,j ). It is clear
that the solution ZT- 1 can be computed by solving

the resulting (r – 1)th order upper triangular system
of equations without modifying the parameters of

[Ar-lllbr-l].
b) / < r – 1. Here, the lth row and column eliminated

from [Ar I[br] affects the elements in (/+ 1: r) rows
and columns of bottom right comer of the matrix A,
md (/+1 : r) rows of the vector b.. These elements

of matrix Ar and vector b. must be updated to obtain
the correct solution of the system. For additional
details, the reader is referred to [22].

2) Gaussian elimination without pivoting of the submatrix

in rows and columns (-/ + 1) through n.

The algorithm outlined next implements the procedure dis-
cussed above.

Algorithm D-ORGE: Decremented Order

Recursive Gaussian Elimination
comment: update
fori=r,. ..,l+l

fork =i,. ... r

[ak,~_l . . . ak,~l[bk] := [ak,~_l . . . ak,~llbk]

+’71k,i-l [ai-l,i-l ””. ai–l,~l[bt–1]

end

end
comment: delete tth row and column

A,,,-, ,.,-, A,.t-l,e+,,. II bl e_,
Set [AIM:= [A,+, .:,+l,. A,+l,,>l.t_, II b,+, ,.1

comment: triangularize Az+ 1,r,l+1,Tand update bt+1,r
forj=l+l,...,l–l

fori=j,. ..,l–l

;;+l:j= ai+l>jl%>j
%, . . . a~+l,rllb~+l]:= [a;+l,j . . . ai+l,~llb,+l]l

–w+l)j[aj,j ””. aj)rllhl
ai+l,j := %+1,j

end

end

In the algorithm above, Al, L..l,l,g_l represents a matrix with
row and column indexes 1, . . . , (1 - 1) and bl:t-l represents

k%+d,b.+d=[~]=
all alz . . . al,y

7721 a22 . . . a2,r

“.

%,1 qT,2 “”” ar,r

ar+l,l ar+l,2 “.” ar+l, r

al,r+l

a2,T+l

ar,r+l

ar+l,r+l
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a column vector with row indexes 1, . . . . (/ – 1). Note that
instead of a single row/column, if several rows and columns
were to be deleted at the same time, the algorithm D-ORGE

can be easily adapted to achieve that. Details have been

omitted for the sake of brevity and may be found in [22].

C. Computational Complexity

1) Algorithm A-ORGE: It is clear from the description in
Section III-A that the computational complexity of A-ORGE
is identical to Gaussian elimination. The only difference is the
sequence in which the elimination is performed. Hence, the
elimination and back substitution together require O (IV+ lM)3
operations, where (i’V + Ill) is the dimension of the final
augmented matrix. However, if a new Gaussian elimination

together with back substitution is performed for each system
of order (IV + ikf), where i = O, . ~., r denotes the iteration

number, ~ is the number of rows and columns by which the
matrix is augmented in each iteration, and (rfi) = M, then

the operations count is approximately X[=o (iV + il@3. To see
that the latter is an order of magnitude higher than the former,
consider the following example.

Let IV = 100, ~ = 10, r = 10, i.e., we are augmenting the
system matrix by ten rows and columns in each iteration and
performing a total of ten iterations. The resulting operations
count is shown in Fig. 3. Note that since the intent is to

observe the order of magnitude complexity, the operations
count has been weighted down by (iV + iM)3 for both
methods at each iteration. It can be seen clearly that while
A-ORGE operations count exhibits a slope of zero (implying
O(JV + JW)3 operations count), as anticipated, the normalized
count for the case when the entire solution is recomputed from
scratch shows constant nonzero slope (implying O(N + lkf)4).
It is evident that the computational savings of A-ORGE are
most significant when the iteration count is large.

2) Algorithm D-ORGE: It is evident that the total oper-

ations required to update and triangularize the sub-system

[A~+l,~,L+l:~ Ilbt+l,~] is twice the cost of Gaussian elimination
for a matrix of dimension (N – /), where N is the order of
the matrix and / is the index of row/column that needs to be
eliminated, i.e., O (N –/)3 operations are required for updating
and triangularizing operations in Algorithm D-ORGE.

Note that since / cahnot be specified apriori, it is difficult to
give a precise computational count. It suffices to say, however,
that intelligent arrangement of the elements of the system
matrix would ensure that (N – /) << N. Clearly, performing
a completely new Gaussian elimination for each decremented

4.0 I

3.5

m
c
.g 1.5
g
o 1.0
8

0.5

0.0 ‘ I I 1 I

I=o i4 i=4 M i=a i=lO

Order (N+i~

Fig. 3. Order-of-magnitude estimate of operations count.

matrix will require approximately O(N3 ) operations, hence

the proposed technique can provide significant reduction in
the computational cost.

D. Validation Example

We next consider a simple design problem that serves to
validate as well as illustrate the use of ORGE in microwave

circuit simulation. We consider the problem of recursively

determining the current distribution on a rectangular plate
in free space, shown in Fig. 4. The intent of this example
is to show how the problem may be cast in the ORGE
framework and then to verify that indeed the solution so
obtained is accurate. The real impact of ORGE will be seen on
considerably higher-order problems. It is also noted that the
final plate dimensions are known in this example, hence, we
could solve the corresponding system of equations directly

instead of recursively building up the solution. Using this

simple example, however, we wish also to illustrate that the
impedance (or moment) matrix is not necessarily augmented

as required by ORGE and how that situation is handled. The
construction of the augmented matrix model in this example
is directly applicable to circuit geometries of arbitrary shape,
where currents in two orthogonal directions need consideration
[1].

The plate has dimensions L = 0.5 mm and width W = 0.2
mm. The current distribution over the plate is computed by
the MoM using roof-top basis functions and razor testing [14].
Instead of directly solving for the current over a plate of size
0.5 mm x 0.2 mm, however, we employ ORGE to recursively

all a12 . . . al,T_3 al,v–2 al,r–l al)r II bl

7121 a22 . . . a2,T_3 a2,v_2 a2, r–1 a2,v bz

“.
I I II

7&3,1 %-3,2 “”” a@p3 ar_3,T–2 ar–3, r–l ay–3,T br-3

%-2,1 7%–2,2 “ “ “ VT–2,T–3 av–2,T–2 ar–z,r–l ar–~,r br-z

‘%–1,1 %-1,2 “ “ “ qr–l,r–3 ‘%–1,.–2 ar–l,r–l ar_l,r b.-l

m-,1 %,2 “““ 71r,r-3 %-,.–2 %,r-1 ar,r b.

(6)
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Fig. 4. A rectangular plate in free space.

TABLE I
ORDEROF MATRICESFOR DIFFERENTPLATE DIMENSIONS

m

build this solution starting from a 0.2 mm x 0.2 mm plate and
uniformly incrementing the plate length in three iterations to
0.5 mm (the width remains unchanged at 0.2 mm). In each
iteration, the plate is divided into an appropriate number of
square cells, each of side 0.05 mm. Let M and N denote the
number of cells along z and y, respectively, while N% and NY

denote the number of corresponding basis functions. Table I

displays the order of the moment matrix, namely, N. + NV,
at each iteration of ORGE.

Because of the orthogonal x- and y-directed currents along
the plate surface, the order in which moment matrix elements
are filled is not as expected by ORGE. Consider the 4 x 4
(cells) plate which supports 12 basis functions each along the
z- and y-directions. The structure of the moment matrix for
this plate is given by the matrix

rmll “11 1

(7)
LAy. ~Yy J

where each submatrix is of the order 12 x 12. The first

and second subscripts indicate testing and expansion cur-
rent directions. The superscripts indicate that the expansion
function and the test path both pertain to the first iteration.
When the plate is extended to 6 x 4 cells, each submatrix in
(7) is block-augmented by the reactions associated with the
currents flowing along the plate extension. As shown below,
this arrangement will not create a bordered system required
by ORGE. With the same notation as in (7), the 6 x 4 plate
yields the matrix

-211

12;?2
221

8 Xzl%
-jpi-

12::2
221

-6 Xyl;

z
12

12%3
222

8 ;i

212

12?8
222

6% I
211

12;?2
221

8 Xzli

211

12?!2
221

6X%

212-

12%

z;

8x6
--jjT2-

12%
222

6 %

(8)

where the order of each submatrix is explicitly shown. The

second superscript of each submatrix indicates the iteration

corresponding to the expansion function, while the first irldi-
cates that corresponding to the test path location. For example,
with the cells numbered sequentially from iteration to iteration,

~$z represents the reaction between a y-directed basis element
along the plate extension (or second iteration) and a test point
along the 4 x 4 plate considered in the first iteration. The block-
augmented system above can be brought to the bordered form
[see (4)] by performing appropriate block row and column

permutations, yielding the augmented matrix model

z::
12X12

z;:

12X12
221

s x%
221

6 x~2

212
12%?

z
12

12~8

Z%
8x8
222

6%

(9)

This system is in a form suitable for application of ORGE. The

above model can be easily generalized to any iteration. In fact,
the same formulation can be applied to the iterative design
of any planar structure that supports both m and y-directed

currents.
Fig. 5 displays the real and imaginary parts of the x-directed

current along the AA-cut (see Fig. 4) through the center of the
plate. The current location is measured by the cell numiber.
As discussed earlier, the plate size is successively extended
along the x-direction by two cells at each iteration, stanting
from a length of four cells. The cell numbers along the ~-

direction at each iteration are shown in the first column of

Table I. Thus, the curve in Fig. 5 for abscissa between zero
and four corresponds to the first iteration, that between zero
and six corresponds to the second, and so on. The current at
each iteration has been computed using ORGE. The complex
current in the last iteration has been compared to the direct
MoM computation from [14]. It has been found that the two
results agree within eight decimal places for both real and
imaginary currents. A similar validation has been observed
for the y-directed current also, but, it is not presented for
brevity. We believe that the accurate calculation of surface

current distribution is a much more stringent test of validation

than comparisons based on far-field parameters or circuit
parameters. All these parameters are ultimately computed
using the current distribution determined by the MoM.

IV. SIMULATION RESULTS

Fig. 6 shows the insertion loss at a few iterations for a mi-
crostrip double-stub, notch filter (shown in Fig. 2) on alumina
substrate (CF = 9.9, h = 0.127 mm). The metallization k 5-
~m-thick copper (a.ff = 4.5 x 107 S/m) and W = 0.126 mm.
The stub length is increased in five iterations from Ys = 1..458

mm to Ys = 2.916 mm, with the separation fixed at d~ =
0.756 mm. The current distribution over the filter is computed
at each iteration using an efficient PC-based moment method
implementation described in [11], which employs closed-form
Green’s functions and exploits symmetries and redundancies
in the various reactions to fill the moment matrix. The MoM
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Fig. 6. Iterative double-stub notch filter design: Ys changing.

algorithm is the mixed potential approach described in [14].
Once filled, the system of linear equations is solved using
the ORGE algorithm. The S-parameters are computed at the

reference planes located on the input and output lines at a

distance of 2 mm from the filtering stub. The de-embedding

line segments have length L = 3 mm.

Fig. 6 clearly shows that the designed notch frequency of

10 GHz and the notch attenuation of about 40 dB are achieved

Fig. ‘1.
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Fig. 8. Vaildation of the optimal filter design with experiment.

after the fifth iteration. Computationally, instead of solving the
linear systems of order (N+ iN~), i = 0,1,.. ~, r and N =
N, + N. -t iV~n, which involves O((N + riVd)4) operations,,.—
using ORGE we effectively solved one (N + rNd)th-order

system with 0( (N + riV~)3) operations. For the present
simulation, Ni = NO = 16, NdO = 4, Nd = 10 and r =
5. The solution of linear system of equations using ORGE
requires 7.5 x 105 complex operations, compared to 2.6 x 106
required for solving the complete problem from scratch at each
iteration. Fig. 6 shows that the location of the stop-band and
the notch frequency are controlled by the length of the stubs.

Fig. 7 displays the insertion loss with YS = 2.916 mm, but

the stub spacing varied from d, = 0.252 mm to d, = 0.756
mtn. We infer that the Q of the stop-band is controlled by the
spacing, with d, = 0.756 mm yielding attenuation close to
the design specifications. Therefore, it seems that the optimal
filter design has YS = 2.916 mm and d. = 0.756 mm. Fig. 8
corroborates the ORGE-computed response of this optimal
design with the measurements reported in [12]. Other design
examples can be found in [16].

V. CONCLUDING REMARKS

An order-recursive variant of Gaussian elimination has been

presented for efficient solution of linear equations, arising in
the interactive design of MMIC elements because of either
augmenting or decrementing the baseline matrix by block
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row and column vectors corresponding to reactions asso-

ciated with discontinuities. The usefulness of ORGE in a
CAD environment has been demonstrated by its application

to the design of a microstrip double-stub filter simulated

by the moment method. The geometrical layout determined
by the terminal iteration yields a response that meets the
design specifications and corroborates well with measured
and independently simulated results reported in literature.
Accuracy of the current distribution computed using ORGE
has been validated with direct calculation using the well-

known mixed potential integral equation approach. ORGE
speeds up interactive design and circuit de-embedding by up

to a factor of N/c—where N is the order of the circuit model
and c is a constant considerably smaller than N. ORGE is

anticipated to be very useful in the simulation, optimization,
and
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